

### TABLE OF CONTENTS

| Section | Title                             | Page |
|---------|-----------------------------------|------|
| 1.0     | History                           | 1    |
| 2.0     | Summary                           | 2    |
| 3.0     | Method Descriptions               | 4    |
|         | Volatile Organics                 | 4    |
|         | Landfill Gas                      | 5    |
|         | Petroleum Hydrocarbons            | 6    |
|         | Volatile Sulfur Compounds         | 7    |
|         | Fixed Gases                       | 7    |
|         | Dissolved Gases                   | 8    |
|         | Hydrocarbon Speciation            | 9    |
|         | Ozone Precursors                  | 9    |
|         | Natural Gas                       | 10   |
|         | Ultra Low-Level Volatile Organics | 10   |
| 4.0     | Project Experience                | 11   |
| 5.0     | Personnel                         | 12   |
| 6.0     | Facilities                        | 14   |
| 7.0     | Target Analyte Lists              | 15   |
| 8.0     | Instrumentation                   | 21   |
| 9.0     | Certification                     | 24   |

### HIST<mark>ORY</mark>

Air Technology Laboratories, Inc. is a small business enterprise that specializes in air toxics analyses. Serving its customers nationwide since 1997, Air Technology Labs is owned and operated by Mark Johnson and Val Mallari. The two veteran chemists have worked alongside one another for several years, including time together at Total Laboratory Care, Inc. dba Air Technology Laboratories under its previous management. In August 2004, they realized their mutual goal to purchase and fully manage Air Technology Laboratories. To ensure a smooth transition in the change of ownership, they incorporated the lab under the same name and retained the existing staff.

Both Mark Johnson and Val Mallari are degreed chemists and have been in the environmental laboratory industry since 1987. Their combined experience and knowledge enables them to develop and perform specialized testing for routine and non-routine air projects. Two additional senior chemists and an experienced project manager round out this dedicated staff. Through the years, customers have come to depend on Air Technology Labs for quality data and as a reliable resource for technical assistance.

Air Technology Labs' mission is to consistently fulfill the expectations of its customers, which results in lab services that are well focused, coherent and brimming with quality. To affirm its commitment to quality, the lab maintains national accreditation to perform air and emission analyses through the National Environmental Laboratory Accreditation Conference *(Certification No. E87847 and 04140).* 

### **SUM**MARY

Air Technology Labs analyzes samples collected from various sources including soil vapors from underground plumes, low-level indoor air, ambient air and landfill gas. Vapor and air samples are submitted in a variety of media including SUMMA canisters, SilcoCan<sup>™</sup> canisters and Tedlar bags. Custom-designed instrumentation allows for the processing of samples with a preciseness that meets the requirements of this specialized field of testing.

Expertise in the air-testing industry has generated a diverse client base for Air Technology Laboratories, including regulatory agencies, environmental consultants, direct end users and other environmental laboratories. Mr. Johnson and Mr. Mallari are known to provide technical guidance for those clients occasionally faced with unusual analytical objectives. Experience includes providing analytical support for field experiments and product development.

Analytical methods commonly performed include EPA, ASTM and SCAQMD methods for:

- Volatile organic compounds
- Ultra low-level VOC's
- Volatile sulfur compounds
- Petroleum hydrocarbons
- Landfill gas

- Dissolved biogenic gases
- Fixed gases
- Natural gas
- Hydrocarbon speciation
- Ozone precursors

### **SUM**MARY

**Customized test procedures** are performed to meet specific project objectives. Section 3.0 describes the common test methods, while Section 7.0 contains target analyte lists and reporting limits.

All samples are analyzed by degreed environmental chemists with qualities such as integrity, honesty and dependability ensuring that data reported by the lab is both accurate and reliable. These skillful chemists analyze samples according to established method protocol and an approved internal Quality Assurance/Quality Control (QA/QC) program. Analytical standards used are second source verified and are traceable to the National Institute of Standards Technology (NIST).

Method performance is monitored using laboratory control check samples, method blanks and internal quality control samples. A laboratory information management system (LIMS) manages data electronically and is adaptable to the various report format requirements common in the industry. Collectively, these data management systems assure that all results reported by the lab are not only accurate and reliable, but legally defensible as well.

#### VOLATILE ORGANICS BY GC/MS

EPA TO14/TO14A and EPA TO15 are the most commonly used methods for the analysis of volatile organic compounds. EPA TO15, most recently promulgated, will eventually phase out EPA Method TO14/TO14A. EPA TO15 provides more detailed QA/QC procedures and specifies the exclusive use of the GC/MS as the analytical instrument.

Samples are collected in evacuated stainless steel canisters (SUMMA or SilcoCan<sup>™</sup>). Opening the canister's valve allows the vacuum to rapidly come to equilibrium with the ambient pressure, which results in an instantaneous or "grab" air sample. When a flow controller is attached to the canister valve the sample intake is metered at a pre-determined interval (0.2 to 24 hours), which results in a composite sample.

The samples are pressurized in the laboratory and screened for contaminant levels prior to analysis. The sample is attached to the analytical instrument where it first undergoes a concentration step to achieve the lowest possible detection limits. The desired volume of sample is drawn through a cryogenically cooled sorbent trap using a mass flow controller. The contents of the trap are dry-purged to remove excess water, then heated by ballistic measures and swept into the GC/MS for analysis. The performance of the method is controlled through the analysis of laboratory control samples, duplicate control samples, method blanks, internal and surrogate standards and verifiable calibration standards.

#### LANDFILL GAS - TOTAL NON-METHANE ORGANIC CARBON & NITROGEN

Under Resource Conservation and Recovery Act (RCRA), landfills that accept municipal solid waste (MSW) are primarily regulated by state, tribal and local governments. However, the EPA established national standards that landfills must meet in order to stay open. RCRA Subtitle D regulations promulgated on October 9, 1991, require the concentration of methane generated by MSW landfills not exceed 25 percent of the lower explosive limit (LEL) in on-site structures or at the facility property boundary.

EPA 25C/3C allows for the analysis of TNMOC in landfill gas samples. Samples are collected in evacuated stainless-steel canisters. Prior to analysis in the laboratory, the canister is pressurized with helium. It is subsequently attached to the analytical instrument; a sample loop is then filled with the contents of the sample and swept into a GC equipped with a flame ionization detector (FID) and thermal conductivity detector (TCD). Using a series of valves and columns, methane and carbon dioxide are allowed to elute from the column whereupon the remaining sample is back flushed to an oxidation/reduction process and then detected by the FID as one chromatographic peak. Simultaneously, a portion of the sample is detected by the TCD for the quantification of nitrogen and oxygen. The concentration of the oxygen and nitrogen found in the canister can determine if any leaks occurred during sample collection.

EPA Methods 25C and 3C dictate that the system be calibrated against propane, reported as parts per million as carbon, then corrected for nitrogen and

moisture. The quality control of EPA 25C includes triplicate analysis of each level of the calibration curve, triplicate analysis of the samples, analysis of a method blank and analysis of a daily standard. EPA 3C requires duplicate analyses, and both EPA 25C and 3C precision must be 5% or less.

#### PETROLEUM HYDROCARBONS - TVPH/BTEX/MTBE/HEXANE

According to the EPA, there are about 680,000 underground storage tank systems (USTs) nationwide that store petroleum or hazardous substances. Leaking USTs can leave considerable cleanup problems with an estimated cost anywhere between \$10,000 for a relatively small area to \$125,000 for the average cleanup<sup>(1)</sup>. In 2005, there were 7,421 confirmed releases, bringing the total to 332,799 since the UST program was implemented in 1984. <sup>(2)</sup>

In support of the investigation and remediation activities at leaking UST sites, Air Technology Labs has the capability to analyze air samples for Total Volatile Petroleum Hydrocarbons, Benzene, Toluene, Ethylbenzene, Xylenes, Methyl-tertbutylether and Hexane.

Generally, samples are collected by pumping soil vapors or ambient air into a Tedlar bag. Getting the samples to the lab as soon as possible is important due to the relatively short holding time associated with Tedlar bags (three days). Upon receipt, samples are inspected for damage or leaks that may result in a degradation of data quality. Samples are analyzed by a gas chromatograph equipped with a FID

<sup>&</sup>lt;sup>(1)</sup> US EPA - Leaking Underground Storage Tank Facts

<sup>&</sup>lt;sup>(2)</sup> Office of Underground Storage Tanks, FY2005 End-of-Year Activity Report

and photoionization detector (PID). Quality control consists of analysis of a laboratory control sample, laboratory duplicate control sample, method blanks and verifiable calibration standards.

### VOLATILE SULFUR COMPOUNDS BY GC/FPD AND GC/PFPD

Samples collected for the analysis of Hydrogen Sulfide and Volatile Sulfur Compounds by EPA Methods 15 and 16 or ASTM D5504 require special handling. Hydrogen Sulfide reacts quickly with stainless steel, while any sulfur containing compounds tend to adhere to active sites found inside a stainless steel canister. Therefore, samples should be collected in containers that are very inert and free of any stainless steel. Sample containers that fit this profile include Tedlar bags and stainless steel canisters whose interiors are specially coated with fused silica, which makes the surface inert (e.g. SilcoCan<sup>™</sup>).

Following the procedures described in EPA Methods 15 and 16, the sample is introduced into a GC that is equipped with a flame photometric detector. The chromatography is performed on a capillary column or specially packed Teflon column to minimize interactions with the compounds of interest. The PFPD (Pulsed Flame Photometric Detector) uses state-of-the-art electronics and detector technology to identify extremely low levels of sulfur compounds even in a background matrix of high concentrations of hydrocarbons and other compounds.

#### **FIXED GASES**

Many processes require the determination of Oxygen, Carbon Dioxide, Methane

and Nitrogen. Air Technology Labs can perform these analyses. Procedures used are similar to those of the landfill gas analysis previously described.

A sample is introduced into the GC/FID/TCD system via a sample loop injector and through a series of valves and special columns; then the analytes of interest are detected. Quality control procedures follow those described in EPA Method 3C and ASTM D1946. Other compounds such as carbon monoxide and hydrogen can be added.

#### DISSOLVED GASES IN WATER (METHANE, ETHANE, ETHYLENE)

Natural attenuation, or intrinsic remediation, is a popular and effective remediation technique. It allows for naturally occurring microbial activity to metabolize the contaminants of concern. The results from the analysis of groundwater samples for dissolved gases helps evaluate the suitability of using this technique for a specific site and/or to determine the progress of remediation. EPA Method RSKSOP-175 (Robert S. Kerr Standard Operating Procedure) is used to determine the presence of Dissolved Gases, such as, Methane, Ethane and Ethylene.

The procedure requires that the sample be collected in an airtight, headspace free container (e.g., 40-mL VOA vial) preserved to pH <2 (unless carbon dioxide needs to be determined, then no acid preservative is required). The laboratory generates a headspace in the sample by replacing a portion of the water with helium. After thorough agitation and equilibration, an aliquot of the headspace is analyzed via GC/FID. Henry's Law stipulates that in a closed system in equilibrium, the

concentration of a gas in the headspace can be used to determine the concentration of the gas dissolved in water. Quality control includes the analysis of a method blank, sample duplicates (when available), and laboratory control samples.

#### HYDROCARBON SPECIATION

In many projects requiring the determination of hydrocarbon contamination, the carbon range distribution of the contaminant is desired. For volatile analyses this involves being able to detect the range of hydrocarbons from ethane (C2) to dodecane (C12). Due to the broad boiling point range being assessed, special considerations must be taken to ensure acceptable and consistent performance. Chromatographic techniques developed at the California Air Resources Board are used to provide accurate and consistent speciation results.

#### **OZONE PRECURSORS**

Ozone is of primary concern to the US EPA in its latest promulgation to the Clean Air Act, especially ozone's presence in metropolitan areas. The emission of hydrocarbons (ozone precursors) from vehicles and industrial sources is the leading cause of man-made ozone. The photo reactivity of specific hydrocarbons can vary greatly. Therefore, speciation and quantification of these specific hydrocarbon components is critical in the determination of potential ozone production by the source.

The identification and quantification of low-level hydrocarbons is challenging due

to the variability in sample concentrations and the wide range in boiling points from C2 compounds up to the C13 isomers. Air Technology Labs offers a GC/MS method that can provide low detection limits (ppbv) for a list of analytes typical of the ozone precursors.

### NATURAL GAS ANALYSIS

Air Technology Labs has extensive experience in the analysis of natural gas and/or refinery gas. Samples are typically collected in stainless steel canisters, which are then analyzed by GC/FID/TCD. The analysis by ASTM D1945 determines the concentration of several hydrocarbon species, from which BTU and Specific Gravity can be calculated.

#### ULTRA LOW-LEVEL VOLATILE ORGANICS IN AMBIENT AIR

Soil vapor intrusion is continuously growing area of concern in environmental investigations. Vapor intrusion is the process by which subsurface volatile contaminants find a pathway into an overlying building. To assess whether or not a site is susceptible to vapor intrusion, a consulting firm performs an initial site assessment, which may include testing of the indoor air. Such a test would require achieving very low detection limits so that risk assessment calculations can be performed. Air Technology Labs has participated in groundbreaking vapor intrusion projects and developed a GC/MS method that achieves method detection limits in the sub-parts-per-trillion levels.

## PROJECT EXPERIENCE

| DATE/LOCATION                       | ANALYSES                       | PROJECT DESCRIPTION                                                                                                                |
|-------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 2002-Present<br>Denver, CO          | TO15 SIM<br>TO15 Scan<br>TO14  | Indoor vapor intrusion samples for ultra low-<br>level volatile organic analyses. Average of 12-<br>15 samples submitted per week. |
| 2001-2004<br>Denver, CO             | TO15 SIM                       | Indoor vapor intrusion samples for ultra low-<br>level volatile organic analyses. Average of 20<br>samples submitted per week.     |
| 2001-Present<br>Burbank, CA         | TO14                           | Quarterly volatile organic compound analyses from a soil vapor extraction system.                                                  |
| 2002-2004<br>George AFB, CA         | TO14<br>TO3                    | Analyses in support of a base closure using AFCEE Handbook; ERPIMs data deliverables.                                              |
| 2002-Present<br>Edwards AFB, CA     | TO14<br>TO3                    | Analyses in support of a base closure using AFCEE Handbook; ERPIMs data deliverables.                                              |
| 2002-2003<br>San Diego, CA          | TO14<br>TO3                    | Navy CLEAN program. Provided electronic data deliverables.                                                                         |
| 1999-2000<br>Tampa, FL              | TO14                           | Analyses in support of establishing health standards for Methyl Bromide exposure.                                                  |
| 1998<br>San Diego, CA               | RSK175<br>TO14                 | Groundwater well monitoring for hazardous constituents.                                                                            |
| 1997-Present<br>National            | EPA 25C<br>EPA 3C<br>EPA 15/16 | Tier 2 testing of landfill gases. One - 20 samples per event.                                                                      |
| 1997-Present<br>Southern California | ТО3                            | Weekly monitoring of soil vapor extraction systems.                                                                                |
| 1997-Present<br>Latham, NY          | ТО3                            | Monthly monitoring of soil vapor extraction system.                                                                                |

# MARK JOHNSON

**TECHNICAL SPECIALTIES** 

- Method development
- GC and GC/MS analysis of air samples
- Instrument design and troubleshooting
- Technical consultant

Mr. Johnson is responsible for the efficient and productive daily operation of the laboratory. He provides technical support to clients when scheduling air testing sampling programs. He performs analyses, as well as reviews and approves laboratory results. Mr. Johnson also maintains and troubleshoots analytical instruments.

#### QUALIFICATIONS

Mr. Johnson has twenty years of experience in the environmental laboratory industry, eighteen of those years focused on the analysis of air samples. Mr. Johnson assisted in the start-up of an air laboratory in 1989 that eventually grew to become one of the industry-leaders in the analysis of air samples. His ability to maintain and design complex instrumentation allows the laboratory to function at peak capacity.

Mr. Johnson's experience includes the analysis of air samples for a wide-range of methods (EPA TO14/TO15, EPA 15/16, EPA 25C/3C, EPA TO3, ASTM D1945, ASTM D1946, Modified 8010, SIM-Mode GC/MS for trace level volatile organics, and others). He has performed analyses for a variety of complex Department of Defense projects including Air Force (AFCEE), Navy (NFESC), and Army Corp of Engineers. He is fluent in the strict QA/QC procedures required of DOD projects.

#### EDUCATION

B.S. Chemistry, University of California at Irvine

# VAL MALLARI

**TECHNICAL SPECIALTIES** 

- Method development
- Trained service engineer for Varian GC and GCMS equipment
- GC and GC/MS analysis of air samples
- Technical consultant

Mr. Mallari is responsible for increasing the customer base for the laboratory and pursuing other markets that would increase the laboratory's analytical repertoire.

#### QUALIFICATIONS

Mr. Mallari has nineteen years experience in the environmental laboratory industry. He has been involved in the start-up of two laboratories and been laboratory manager for nine years and technical director and program manager for six years.

Mr. Mallari's unique combination of experience in the technical and management side of the laboratory business provides him with the necessary skills to understand the customer's needs and expectations. These skills have helped Mr. Mallari increase sales and customer base in several of the laboratories listed in his Work Experience summary.

#### EDUCATION

B.S. Chemistry San Diego State University

#### SPECIAL TRAINING

OSHA 40 Hour Training for Hazardous Waste Activities Varian GC and GCMS Service Engineer Training

### FACILTIES



Air Technology Labs occupies a solvent-free 6000 square foot

facility located east of Los Angeles in the City of Industry. The laboratory was designed solely for air testing. It is reflected in the state-of-art equipment, the strategic location of fume hoods and benches, and the complete absence of solvents.

The solvent-free nature of the laboratory provides our customers the added confidence that their data will not be subject to the costly and time-consuming process of determining sources of contamination in trip blanks and field blanks, nor does the laboratory have to contend with method blank contamination due to solvent use.

| Volatile Organic Compounds <sup>(1)</sup>        | TO-14A<br>Standard<br>RL (ppbv) | TO-15<br>Standard<br>RL (ppbv) | TO-15<br>Low Level<br>RL (ppbv) | TO-15<br>SIM<br>RL (ppbv) |
|--------------------------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------|
| Dichlorodifluoromethane (12)                     | 1.0                             | 1.0                            | 0.20                            | *                         |
| Chloromethane                                    | 2.0                             | 2.0                            | 0.40                            | *                         |
| 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (114) | 1.0                             | 1.0                            | 0.20                            | *                         |
| Vinyl Chloride                                   | 1.0                             | 1.0                            | 0.20                            | 0.0050                    |
| Bromomethane                                     | 1.0                             | 1.0                            | 0.20                            | *                         |
| Chloroethane                                     | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| Trichlorofluoromethane (11)                      | 1.0                             | 1.0                            | 0.20                            | *                         |
| 1,1-Dichloroethene                               | 1.0                             | 1.0                            | 0.20                            | 0.0050                    |
| Carbon Disulfide                                 | *                               | 5.0                            | 1.0                             | *                         |
| 1,1,2-Trichloro-1,2,2-<br>Trifluoroethane (113)  | 1.0                             | 1.0                            | 0.20                            | *                         |
| Acetone                                          | *                               | 5.0                            | 1.0                             | *                         |
| Methylene Chloride                               | 1.0                             | 1.0                            | 0.20                            | 0.040                     |
| t-1,2-Dichloroethene                             | *                               | 1.0                            | 0.20                            | 0.010                     |
| 1,1-Dichloroethane                               | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| Vinyl Acetate                                    | *                               | 5.0                            | 1.0                             | *                         |
| c-1,2-Dichloroethene                             | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| 2-Butanone                                       | *                               | 1.0                            | 0.20                            | *                         |
| Chloroform                                       | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| 1,1,1-Trichloroethane                            | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| Carbon Tetrachloride                             | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| Benzene                                          | 1.0                             | 1.0                            | 0.20                            | 0.040                     |
| 1,2-Dichloroethane                               | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| Trichloroethene                                  | 1.0                             | 1.0                            | 0.20                            | 0.010                     |
| 1,2-Dichloropropane                              | 1.0                             | 1.0                            | 0.20                            | *                         |

### VOLATILE ORGANIC COMPOUNDS<sup>(1)</sup>

<sup>(1)</sup> Additional analytes (including EPA 8260B analytes) available upon request.

### VOLATILE ORGANIC COMPOUNDS<sup>(1)</sup>

| Volatile Organic Compounds <sup>(1)</sup> | TO-14A<br>Standard | TO-15     | TO-15<br>Low Level | TO-15<br>SIM |
|-------------------------------------------|--------------------|-----------|--------------------|--------------|
|                                           | RL (ppbv)          | RL (ppbv) |                    | RL (ppbv)    |
| Bromodichloromethane                      | *                  | 1.0       | 0.20               | 0.010        |
| c-1,3-Dichloropropene                     | 1.0                | 1.0       | 0.20               | *            |
| 4-Methyl-2-Pentanone                      | *                  | 1.0       | 0.20               | *            |
| Toluene                                   | 1.0                | 1.0       | 0.20               | *            |
| t-1,3-Dichloropropene                     | 1.0                | 1.0       | 0.20               | *            |
| 1,1,2-Trichloroethane                     | 1.0                | 1.0       | 0.20               | *            |
| Tetrachloroethene                         | 1.0                | 1.0       | 0.20               | 0.010        |
| 2-Hexanone                                | *                  | 1.0       | 0.20               | *            |
| Dibromochloromethane                      | *                  | 1.0       | 0.20               | *            |
| 1,2-Dibromoethane                         | 1.0                | 1.0       | 0.20               | *            |
| Chlorobenzene                             | 1.0                | 1.0       | 0.20               | *            |
| Ethylbenzene                              | 1.0                | 1.0       | 0.20               | *            |
| p,&m-Xylene                               | 1.0                | 1.0       | 0.20               | *            |
| o-Xylene                                  | 1.0                | 1.0       | 0.20               | *            |
| Styrene                                   | 1.0                | 1.0       | 0.20               | *            |
| Bromoform                                 | *                  | 1.0       | 0.20               | *            |
| 1,1,2,2-Tetrachloroethane                 | 2.0                | 2.0       | 0.40               | *            |
| Benzyl Chloride                           | *                  | 1.0       | 0.20               | *            |
| 4-Ethyl Toluene                           | *                  | 1.0       | 0.20               | *            |
| 1,3,5-Trimethylbenzene                    | 2.0                | 2.0       | 0.40               | *            |
| 1,2,4-Trimethylbenzene                    | 2.0                | 2.0       | 0.40               | *            |
| 1,3-Dichlorobenzene                       | 1.0                | 1.0       | 0.20               | *            |
| 1,4-Dichlorobenzene                       | 1.0                | 1.0       | 0.20               | *            |
| 1,2-Dichlorobenzene                       | 1.0                | 1.0       | 0.20               | *            |
| 1,2,4-Trichlorobenzene                    | 2.0                | 2.0       | 0.40               | *            |
| Hexachlorobutadiene                       | 1.0                | 1.0       | 0.20               | *            |

EPA 25C - TNMOC IN LANDFILL GAS

| Analyte                                     | Standard<br>Reporting Limit<br>(ppmC) |
|---------------------------------------------|---------------------------------------|
| Total Non-Methane Organic Compounds (TNMOC) | 10                                    |

### EPA 3C AND ASTM D1946 - FIXED GAS ANALYSIS

| Analyte                          | Standard<br>Reporting Limits<br>(%v/v) |
|----------------------------------|----------------------------------------|
| Oxygen                           | 0.50                                   |
| Carbon Dioxide                   | 0.010                                  |
| Nitrogen                         | 1.0                                    |
| Methane                          | 0.0010                                 |
| Carbon monoxide (also available) | 0.0010                                 |
| Hydrogen (also available)        | 1.0                                    |

### RSKSOP-175 - DISSOLVED GASES IN WATER<sup>(2)</sup>

| Analyte                         | Standard Reporting<br>Limits (ug/L) |
|---------------------------------|-------------------------------------|
| Methane                         | 1.0                                 |
| Ethane                          | 2.0                                 |
| Ethene                          | 3.0                                 |
| Oxygen (also available)         | 200                                 |
| Nitrogen (also available)       | 1000                                |
| Hydrogen (also available)       | 10                                  |
| Carbon dioxide (also available) | 200                                 |
| Propane (also available)        | 3.0                                 |
| Acetylene (also available)      | 20                                  |

<sup>(2)</sup> This method is performed according to EPA guidelines for RSKSOP-175.

1...

EPA METHOD TO3 - TVPH/BTEX/MTBE

| Analyte                         | Standard<br>Reporting Limits<br>(ppmv) |
|---------------------------------|----------------------------------------|
| Benzene                         | 0.010                                  |
| Toluene                         | 0.010                                  |
| Ethylbenzene                    | 0.010                                  |
| p&m-Xylene                      | 0.010                                  |
| o-Xylene                        | 0.010                                  |
| TVPH as gasoline <sup>(1)</sup> | 1.0                                    |
| МТВЕ                            | 0.010                                  |

<sup>(1)</sup>TVPH can also be quantified against other petroleum hydrocarbons, such as, jet fuel, kerosene, mineral spirits, etc.

### EPA METHODS 15 AND 16<sup>(1)</sup> -VOLATILE SULFUR COMPOUNDS

| Analyte            | Standard Reporting<br>Limits (ppmv) |
|--------------------|-------------------------------------|
| Hydrogen Sulfide   | 0.20                                |
| Carbonyl Sulfide   | 0.20                                |
| Methyl Mercaptan   | 0.20                                |
| Ethyl Mercaptan    | 0.20                                |
| Carbon Disulfide   | 0.20                                |
| Dimethyl Sulfide   | 0.20                                |
| Dimethyl Disulfide | 0.20                                |

<sup>(1)</sup>Additional analytes available upon request.

**Standard Reporting** Analyte Limits (%v/v) 0.0010 n-Butane Carbon dioxide 0.010 0.0010 Ethane Isobutane 0.0010 0.0010 Isopentane Methane 0.0010 Nitrogen 1.0 n-Pentane 0.0010 Propane 0.0010 Hexanes 0.0010 0.0010 Heptanes Helium (also available) 0.10 Hydrogen (also available) 1.0 Oxygen 0.50 BTU ---Specific gravity --

ASTM D1945 - NATURAL GAS ANALYSIS

1.

#### **OZONE PRECURSORS**

| Analyte                | CAS No.  | Analyte                   | CAS No.   |
|------------------------|----------|---------------------------|-----------|
| 2-Methyl butane        | 78-78-4  | 2,3,4-Trimethylpentane    | 565-75-3  |
| n-Pentane              | 109-66-0 | 2-Methylheptane           | 592-27-8  |
| Isoprene               | 78-79-5  | 3-Methylheptane           | 589-81-1  |
| cis-2-Pentene          | 627-20-3 | Toluene                   | 108-88-3  |
| trans-2-Pentene        | 627-20-3 | n-Octane                  | 111-65-9  |
| 2,2-Dimethyl butane    | 75-83-2  | Ethylbenzene              | 100-41-4  |
| Cyclopentane           | 287-92-3 | p,m-Xylene                | 1330-20-7 |
| 2,3-Dimethyl butane    | 79-29-8  | n-Nonane                  | 111-84-2  |
| 2-Methyl pentane       | 107-83-5 | o-Xylene                  | 95-47-6   |
| 3-Methyl pentane       | 107-83-5 | Styrene                   | 100-42-5  |
| n-Hexane               | 110-54-3 | Isopropylbenzene (cumene) | 98-82-8   |
| 2,4-Dimethylpentane    | 108-08-7 | n-Propylbenzene           | 103-65-1  |
| Methylcyclopentane     | 108-87-2 | p,m-Ethyltoluene          | 620-14-4  |
| 2-Methylhexane         | 291-76-4 | 1,3,5-Trimethylbenzene    | 108-67-8  |
| 2,3-Dimethylpentane    | 565-59-3 | n-Decane                  | 124-18-5  |
| Cyclohexane            | 110-82-7 | o-Ethyltoluene            | 611-14-3  |
| 2-Methyl-1-pentene     | 763-29-1 | 1,2,4-Trimethylbenzene    | 95-63-6   |
| 3-Methylhexane         | 589-34-4 | 1,2,3-Trimethylbenzene    | 526-73-8  |
| 2,2,4-Trimethylpentane | 540-84-1 | p-Diethylbenzene          | 105-05-5  |
| Benzene                | 71-43-2  | o-Diethylbenzene          | 141-93-5  |
| n-Heptane              | 142-82-5 | n-Undecane                | 1120-21-4 |
| Methylcyclohexane      | 108-87-2 |                           |           |

### EQUIPMENT LISTS

### EPA TO14/TO15 - VOLATILE ORGANICS; OZONE PRECURSORS

| Qty | Description                | Manufacturer     | Model                                              |
|-----|----------------------------|------------------|----------------------------------------------------|
| 1   | Mass Spectrometer Detector | Varian           | Saturn 2000 Ion Trap                               |
| 1   | Gas Chromatograph          | Varian           | Model 3800 w/FID, sub-ambient oven                 |
| 1   | NIST library               | -                | -                                                  |
| 1   | Cold Trap Auto Sampler     | Lotus Consulting | 16-position automated air sampler                  |
| 1   | Computer                   | Dell             | Pentium                                            |
| 1   | Data system                | Varian           | Star 5.0 workstation, Stream Select Valve ver. 1.0 |
| 2   | Printer                    | Hewlett Packard  | LaserJet 2100                                      |
| 1   | Mass Spectrometer Detector | Hewlett Packard  | Model 5973                                         |
| 1   | Gas Chromatograph          | Hewlett Packard  | Model 6890, sub-ambient oven                       |
| 1   | NIST library               | Hewlett Packard  | -                                                  |
| 1   | AutoCan Auto Sampler       | Tekmar           | Auto16-position automated air sampler              |
| 1   | Computer                   | Dell             | Optiplex GXi                                       |
| 1   | Data system                | Hewlett Packard  | Enviroquant                                        |

#### TO3 - TVPH/BTEX, MTBE; CARBON CHAIN SPECIATION

| Qty | Description       | Manufacturer     | Model                                                  |
|-----|-------------------|------------------|--------------------------------------------------------|
| 1   | Gas Chromatograph | Varian           | Model 3800 w/FID/PID                                   |
| 1   | Auto Sampler      | Lotus Consulting | 16-position Automated Sampler                          |
| 1   | Computer          | Dell             | Pentium                                                |
| 1   | Data system       | Varian           | Star 5.0 workstation, Stream Select Valve, ver.<br>1.0 |

### EQUIPMENT LISTS

#### EPA 15/16 - VOLATILE SULFUR COMPOUNDS/SCREENING

| Qty | Description       | Manufacturer    | Model                               |
|-----|-------------------|-----------------|-------------------------------------|
| 1   | Gas Chromatograph | Varian          | Model 3400 w/dual flame FPD,<br>FID |
| 1   | Computer          | Dell            | Pentium                             |
| 1   | Data System       | Hewlett Packard | Chem Station                        |
| 1   | Gas Chromatograph | Varian          | Model 3800 w/PFPD                   |
| 1   | Computer          | Dell            | Pentium                             |
| 1   | Data System       | Varian          | Star Workstation                    |

#### EPA 25C- TOTAL NON-METHANE ORGANIC COMPOUNDS EPA 3C & ASTM D1946 - FIXED GASES RSKSOP 175- DISSOLVED GASES

| Qty | Description       | Manufacturer     | Model                         |
|-----|-------------------|------------------|-------------------------------|
| 1   | Gas Chromatograph | Varian           | Model 3800 w/FID/TCD          |
| 1   | Auto Sampler      | Lotus Consulting | 32-position Automated Sampler |
| 1   | Computer          | Dell             | Pentium                       |
| 1   | Data system       | Varian           | Star Workstation              |

### EQUIPMENT LISTS

### SAMPLING & FIELD EQUIPMENT

| Oty | Description                    | Manufacturer                              | Model                                     |
|-----|--------------------------------|-------------------------------------------|-------------------------------------------|
| 200 | Stainless Steel Canisters      | Restek                                    | SilcoCan <sup>™</sup> 6 liter             |
| 400 | Stainless Steel Canisters      | Restek                                    | TO <sup>™</sup> 1 and 6 liter             |
| 15  | Stainless Steel Canisters      | Scientific Instrumentation<br>Specialists | 6 liter                                   |
| 120 | Flow Controllers               | Restek                                    |                                           |
| -   | Tedlar Bags                    | SKC                                       | 1liter to 10 liter, polypropylene fitting |
| 2   | Canister cleaning<br>manifolds | Proprietary                               | 10 positions each (expandable)            |

#### MISCELLANEOUS EQUIPMENT

| Qty | Description   | Manufacturer         | Model           |
|-----|---------------|----------------------|-----------------|
| 2   | Furme Hoods   | Hansen Lab Equipment | Custom built    |
| 2   | Refrigerators | Kenmore              | Coldspot        |
| 1   | Copier        | Ricoh                | Model 1020      |
| 1   | Fax Machine   | Canon                | MultiPass L6000 |
| 4   | Printers      | Canon, Brother, HP   |                 |
| 5   | Computers     | Dell, Toshiba        |                 |

| Cheryl Sonnier Nolan<br>Administrator<br>Public Participation and Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The laboratory agrees to p<br>adapt to any changes in the<br>the applicable requiremen<br>Environmental Quality, Lo<br>accreditation status.<br>Accreditation by the State<br>initially and maintain accre<br>year for each field of testin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | According to the Louisiana<br>recognizes that this laborat<br>attachment.                                                                                                                                                                                                                                                                                                                                                      | DUBRAN                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When and Permit Support Services Division Issued Date: Image: Image | The laboratory agrees to perform all analyses listed on this scope of accreditation according to the Part I, Subpart 3 requirements and agrees to adapt to any changes in the requirements. It also acknowledges that continued accreditation is dependent on successful ongoing compliance with the applicable requirements of Part I and the 2009 TNI Standard by which the laboratory was assessed. Please contact the Department of Environmental Quality, Louisiana Environmental Laboratory Accreditation Program (LELAP) to verify the laboratory's scope of accreditation and accreditation by the State of Louisiana is not an endorsement or a guarantee of validity of the data generated by the laboratory. To be accredited initially and maintain accreditation, the laboratory agrees to participate in two single-blind, single-concentration PT studies, where available, per year for each field of testing for which it seeks accreditation or maintains accreditation as required in LAC 33:1.4711. | 18501 E Gale Ave Ste 130   City of Industry, California 91748   Agency Interest No. 138829   Activity No. ACC20160001   According to the Louisiana Administrative Code, Title 33, Part I, Subpart 3, LABORATORY ACCREDITATION, the State of Louisiana formally recognizes that this laboratory is technically competent to perform the environmental analyses listed on the scope of accreditation detailed in the attachment. | STATE OF LOUISIANA<br>DEPARTMENT OF ENVIRONMENTAL QUALITY<br>Is hereby granting a Louisiana Environmental Laboratory Accreditation to<br>Air Technology Laboratories Inc |
| May 7014<br>July 1, 2016<br>June 30, 2017<br>er: 04140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part I, Subpart 3 requirements and agrees to<br>indent on successful ongoing compliance with<br>assessed. Please contact the Department of<br>ify the laboratory's scope of accreditation and<br>enerated by the laboratory. To be accredited<br>ncentration PT studies, where available, per<br>LAC 33:I.4711.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | te of Louisiana formally<br>itation detailed in the                                                                                                                                                                                                                                                                                                                                                                            | NHILPS RECO                                                                                                                                                              |

#### STATE OF LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

Effective Date: July 1, 2016

#### Air Technology Laboratories Inc AI Number: 138829 Activity No.: ACC20160001 Expiration Date: June 30, 2017

#### 18501 E Gale Ave Ste 130, City of Industry, California 91748

LELA

#### Certificate Number: 04140

### **Air Emissions**

| Analyte                                  | Method Name          | Method Code | Type  | AB         |
|------------------------------------------|----------------------|-------------|-------|------------|
| 4752 - Ethene                            | EPA RSK-175 (GC/TCD) | 10212858    | NELAP | LA         |
| 4926 - Methane                           | EPA RSK-175 (GC/TCD) | 10212858    | NELAP | LA         |
| 4747 - Ethane                            | EPA RSK-175 (GC/FID) | 10212000    | NELAP | LA         |
| 3755 - Carbon dioxide                    | EPA 25C              | 10246761    | NELAP | LA         |
| 4926 - Methane                           | EPA 25C              | 10246761    | NELAP | LA         |
| 1843 - Nitrogen                          | EPA 25C              | 10246761    | NELAP | LA         |
| 3865 - Non-methane organics in landfills | EPA 25C              | 10246761    | NELAP | LA         |
| 3895 - Oxygen                            | EPA 25C              | 10246761    | NELAP | LA         |
| 3755 - Carbon dioxide                    | EPA 3C               | 10240701    | NELAP | LA         |
| 4926 - Methane                           | EPA 3C               | 10247708    | NELAP | LA         |
| 1843 - Nitrogen                          | EPA 3C               | 10247708    | NELAP | LA<br>LA   |
| 3895 - Oxygen                            | EPA 3C               | 10247708    | NELAP | LA<br>LA   |
| 5160 - 1,1,1-Trichloroethane             |                      |             |       | LA<br>LA   |
|                                          | EPA TO-15            | 10248803    | NELAP |            |
| 5110 - 1,1,2,2-Tetrachloroethane         | EPA TO-15            | 10248803    | NELAP | LA         |
| 5165 - 1,1,2-Trichloroethane             | EPA TO-15            | 10248803    | NELAP | LA         |
| 4630 - 1,1-Dichloroethane                | EPA TO-15            | 10248803    | NELAP | LA         |
| 4640 - 1,1-Dichloroethylene              | EPA TO-15            | 10248803    | NELAP | LA         |
| 5155 - 1,2,4-Trichlorobenzene            | EPA TO-15            | 10248803    | NELAP | LA         |
| 5210 - 1,2,4-Trimethylbenzene            | EPA TO-15            | 10248803    | NELAP | LA         |
| 4585 - 1,2-Dibromoethane (EDB, Ethylene  | EPA TO-15            | 10248803    | NELAP | LA         |
| dibromide)                               |                      |             |       | <b>.</b> . |
| 4610 - 1,2-Dichlorobenzene               | EPA TO-15            | 10248803    | NELAP | LA         |
| 4635 - 1,2-Dichloroethane (Ethylene      | EPA TO-15            | 10248803    | NELAP | LA         |
| dichloride)                              |                      |             |       |            |
| 4655 - 1,2-Dichloropropane               | EPA TO-15            | 10248803    | NELAP | LA         |
| 5215 - 1,3,5-Trimethylbenzene            | EPA TO-15            | 10248803    | NELAP | LA         |
| 4615 - 1,3-Dichlorobenzene               | EPA TO-15            | 10248803    | NELAP | LA         |
| 4620 - 1,4-Dichlorobenzene               | EPA TO-15            | 10248803    | NELAP | LA         |
| 4410 - 2-Butanone (Methyl ethyl ketone,  | EPA TO-15            | 10248803    | NELAP | LA         |
| MEK)                                     |                      |             |       |            |
| 4375 - Benzene                           | EPA TO-15            | 10248803    | NELAP | LA         |
| 5635 - Benzyl chloride                   | EPA TO-15            | 10248803    | NELAP | LA         |
| 4400 - Bromoform                         | EPA TO-15            | 10248803    | NELAP | LA         |
| 4450 - Carbon disulfide                  | EPA TO-15            | 10248803    | NELAP | LA         |
| 4455 - Carbon tetrachloride              | EPA TO-15            | 10248803    | NELAP | LA         |
| 4475 - Chlorobenzene                     | EPA TO-15            | 10248803    | NELAP | LA         |
| 4485 - Chloroethane (Ethyl chloride)     | EPA TO-15            | 10248803    | NELAP | LA         |
| 4505 - Chloroform                        | EPA TO-15            | 10248803    | NELAP | LA         |
| 4765 - Ethylbenzene                      | EPA TO-15            | 10248803    | NELAP | LA         |
| 4835 - Hexachlorobutadiene               | EPA TO-15            | 10248803    | NELAP | LA         |
| 4950 - Methyl bromide (Bromomethane)     | EPA TO-15            | 10248803    | NELAP | LA         |
| 4960 - Methyl chloride (Chloromethane)   | EPA TO-15            | 10248803    | NELAP | LA         |
| 5000 - Methyl tert-butyl ether (MTBE)    | EPA TO-15            | 10248803    | NELAP | LA         |
| 4975 - Methylene chloride                | EPA TO-15            | 10248803    | NELAP | LA         |
| (Dichloromethane)                        |                      |             |       |            |
| 5100 - Styrene                           | EPA TO-15            | 10248803    | NELAP | LA         |
| 5115 - Tetrachloroethylene               | EPA TO-15            | 10248803    | NELAP | LA         |
| (Perchloroethylene)                      |                      |             |       |            |
| 5140 - Toluene                           | EPA TO-15            | 10248803    | NELAP | LA         |
|                                          |                      | 102.0000    |       |            |

Clients and Customers are urged to verify the laboratory's current certification status with the Louisiana Environmental Laboratory Accreditation Program.

### **Air Emissions**

| AIFEIIIISSIOIIS                                                     |                                        |             |        |          |
|---------------------------------------------------------------------|----------------------------------------|-------------|--------|----------|
| Analyte                                                             | Method Name                            | Method Code | Туре   | AB       |
| 5170 - Trichloroethene (Trichloroethylene)                          | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 5225 - Vinyl acetate                                                | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 5235 - Vinyl chloride                                               | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 5260 - Xylene (total)                                               | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 4645 - cis-1,2-Dichloroethylene                                     | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 4680 - cis-1,3-Dichloropropene                                      | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 4700 - trans-1,2-Dichloroethylene                                   | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 4685 - trans-1,3-Dichloropropylene                                  | EPA TO-15                              | 10248803    | NELAP  | LA       |
| 4375 - Benzene                                                      | EPA TO-3                               | 10249000    | NELAP  | LA       |
| 4765 - Ethylbenzene                                                 | EPA TO-3                               | 10249000    | NELAP  | LA       |
| 5000 - Methyl tert-butyl ether (MTBE)                               | EPA TO-3                               | 10249000    | NELAP  | LA       |
| 5140 - Toluene                                                      | EPA TO-3                               | 10249000    | NELAP  | LA       |
| 5260 - Xylene (total)                                               | EPA TO-3                               | 10249000    | NELAP  | LA       |
| 5160 - 1,1,1-Trichloroethane                                        | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5110 - 1,1,2,2-Tetrachloroethane                                    | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5195 - 1,1,2-Trichloro-1,2,2-trifluoroethane                        | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5165 - 1,1,2-Trichloroethane                                        | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4630 - 1,1-Dichloroethane                                           | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4640 - 1,1-Dichloroethylene                                         | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5155 - 1,2,4-Trichlorobenzene                                       | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5210 - 1,2,4-Trimethylbenzene                                       | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4585 - 1,2-Dibromoethane (EDB, Ethylene                             | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| dibromide)                                                          |                                        |             |        |          |
| 4695 - 1,2-Dichloro-1,1,2,2-                                        | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| tetrafluoroethane (Freon-114)                                       |                                        |             |        |          |
| 4610 - 1,2-Dichlorobenzene                                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4635 - 1,2-Dichloroethane (Ethylene                                 | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| dichloride)                                                         |                                        |             |        |          |
| 4655 - 1,2-Dichloropropane                                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5215 - 1,3,5-Trimethylbenzene                                       | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4615 - 1,3-Dichlorobenzene                                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4620 - 1,4-Dichlorobenzene                                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4375 - Benzene                                                      | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5635 - Benzyl chloride                                              | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4455 - Carbon tetrachloride                                         | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4475 - Chlorobenzene                                                | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4485 - Chloroethane (Ethyl chloride)                                | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4505 - Chloroform                                                   | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4625 - Dichlorodifluoromethane (Freon-12)                           | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4765 - Ethylbenzene                                                 | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4835 - Hexachlorobutadiene                                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4950 - Methyl bromide (Bromomethane)                                | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4960 - Methyl chloride (Chloromethane)                              | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 4975 - Methylene chloride                                           | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| (Dichloromethane)                                                   |                                        | 10212002    | NEL AD | та       |
| 5100 - Styrene                                                      | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5115 - Tetrachloroethylene                                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| (Perchloroethylene)                                                 |                                        | 10212002    | NEL AD | та       |
| 5140 - Toluene                                                      | EPA TO-14A, Rev.2                      | 10312002    | NELAP  |          |
| 5170 - Trichloroethene (Trichloroethylene)                          | EPA TO-14A, Rev.2                      | 10312002    | NELAP  |          |
| 5175 - Trichlorofluoromethane<br>(Fluorotrichloromethane, Freon 11) | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5235 - Vinyl chloride                                               | EPA TO-14A, Rev.2                      | 10312002    | NELAP  | LA       |
| 5260 - Xylene (total)                                               | EPA TO-14A, Rev.2<br>EPA TO-14A, Rev.2 | 10312002    | NELAP  | LA<br>LA |
| 4705 - cis & trans-1,2-Dichloroethene                               | EPA TO-14A, Rev.2<br>EPA TO-14A, Rev.2 | 10312002    | NELAP  | LA<br>LA |
| 1705 Cis & dans 1,2-Diemoroculene                                   | Li 11 10 1711, IUV.2                   | 10312002    |        |          |

Air Technology Laboratories Inc

Effective Date: July 1, 2016

Certificate Number: 04140

AI Number: 138829 Activity No.: ACC20160001 Expiration Date: June 30, 2017

Clients and Customers are urged to verify the laboratory's current certification status with the Louisiana Environmental Laboratory Accreditation Program.

| Method Name       | Method Code                                                                  | Туре                                                                                                           | AB                                                                                                                                                                             |
|-------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA TO-14A, Rev.2 | 10312002                                                                     | NELAP                                                                                                          | LA                                                                                                                                                                             |
| EPA TO-14A, Rev.2 | 10312002                                                                     | NELAP                                                                                                          | LA                                                                                                                                                                             |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
| Method Name       | Method Code                                                                  | Туре                                                                                                           | AB                                                                                                                                                                             |
| NONE              | NONE                                                                         | NONE                                                                                                           | NONE                                                                                                                                                                           |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
| Method Name       | Method Code                                                                  | Туре                                                                                                           | AB                                                                                                                                                                             |
| NONE              | NONE                                                                         | NONE                                                                                                           | NONE                                                                                                                                                                           |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
|                   |                                                                              | -                                                                                                              | 4.75                                                                                                                                                                           |
| Method Name       | Method Code                                                                  | Туре                                                                                                           | AB                                                                                                                                                                             |
|                   |                                                                              |                                                                                                                |                                                                                                                                                                                |
|                   | EPA TO-14A, Rev.2<br>EPA TO-14A, Rev.2<br>Method Name<br>NONE<br>Method Name | EPA TO-14A, Rev.210312002EPA TO-14A, Rev.210312002Method NameMethod CodeNONENONEMethod NameMethod CodeNONENONE | EPA TO-14A, Rev.210312002NELAPEPA TO-14A, Rev.210312002NELAPMethod NameMethod CodeTypeNONENONENONEMethod NameMethod CodeTypeNONENONENONEMethod NameMethod CodeTypeNONENONENONE |

Effective Date: July 1, 2016

Certificate Number: 04140

AI Number: 138829 Activity No.: ACC20160001 Expiration Date: June 30, 2017

Clients and Customers are urged to verify the laboratory's current certification status with the Louisiana Environmental Laboratory Accreditation Program.



# **CERTIFICATE OF ACCREDITATION**

### **ANSI-ASQ National Accreditation Board**

500 Montgomery Street, Suite 625, Alexandria, VA 22314, 877-344-3044

This is to certify that

### Air Technology Laboratories, Inc. 18501 E. Gale Avenue, Suite 130 City of Industry CA 91748

has been assessed by ANAB and meets the requirements of

### **ISO/IEC 17025:2005 and DoD-ELAP**

while demonstrating technical competence in the field of

### TESTING

Refer to the accompanying Scope of Accreditation for information regarding the types of tests to which this accreditation applies.

ADE-1461 Certificate Number ANAB Approval

Certificate Valid: 08/19/2016-06/20/2018 Issued: 08/19/2016



This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).



### Scope of Accreditation For Air Technology Laboratories, Inc.

18501 E. Gale Avenue, Suite 130 City of Industry, CA 91748 Val Mallari (626) 964-4032

In recognition of a successful assessment to ISO/IEC 17025:2005 and the requirements of the DoD Environmental Laboratory Accreditation Program (ANAB MA2007) as detailed in the DoD Quality Systems Manual for Environmental Laboratories (DoD QSM V5) based on the TNI Standard - Environmental Laboratory Sector, Volume 1 – Management and Technical Requirements for Laboratories Performing Environmental Analysis, Sept 2009 (EL-V1-2009); accreditation is granted to Air Technology Laboratories, Inc. to perform the following tests:

Accreditation granted through: June 20, 2018

#### **Testing - Environmental**

| Air and Emissions |              |                                                    |  |
|-------------------|--------------|----------------------------------------------------|--|
| Technology        | Method       | Analyte                                            |  |
| GC/MS             | TO-14A/TO-15 | 1,1-Dichloroethane                                 |  |
| GC/MS             | TO-14A/TO-15 | 1,1-Dichloroethene                                 |  |
| GC/MS             | TO-14A/TO-15 | 1,1-Dichloropropene                                |  |
| GC/MS             | TO-14A/TO-15 | 1,1,1-Trichloroethane                              |  |
| GC/MS             | TO-14A/TO-15 | 1,1,1,2-Tetrachloroethane                          |  |
| GC/MS             | TO-14A/TO-15 | 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)  |  |
| GC/MS             | TO-14A/TO-15 | 1,1,2-Trichloroethane                              |  |
| GC/MS             | TO-14A/TO-15 | 1,1,2,2-Tetrachloroethane                          |  |
| GC/MS             | TO-14A/TO-15 | 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) |  |
| GC/MS             | TO-14A/TO-15 | 1,2-Dibromo-3-chloropropane                        |  |
| GC/MS             | TO-14A/TO-15 | 1,2-Dibromoethane                                  |  |
| GC/MS             | TO-14A/TO-15 | 1,2-Dichlorobenzene                                |  |
| GC/MS             | TO-14A/TO-15 | 1,2-Dichloroethane                                 |  |
| GC/MS             | TO-14A/TO-15 | 1,2-Dichloropropane                                |  |
| GC/MS             | TO-14A/TO-15 | 1,2,3-Trichloropropane                             |  |
| GC/MS             | TO-14A/TO-15 | 1,2,4-Trichlorobenzene                             |  |
| GC/MS             | TO-14A/TO-15 | 1,2,4-Trimethylbenzene                             |  |
| GC/MS             | TO-14A/TO-15 | 1,3-Butadiene                                      |  |



### Certificate # ADE-1461

| Air and Emissions |              |                                    |
|-------------------|--------------|------------------------------------|
| Technology        | Method       | Analyte                            |
| GC/MS             | TO-14A/TO-15 | 1,3-Dichlorobenzene                |
| GC/MS             | TO-14A/TO-15 | 1,3-Dichloropropane                |
| GC/MS             | TO-14A/TO-15 | 1,3,5-Trimethylbenzene             |
| GC/MS             | TO-14A/TO-15 | 1,4-Dichlorobenzene                |
| GC/MS             | TO-14A/TO-15 | 1,4-Dioxane                        |
| GC/MS             | TO-14A/TO-15 | 2-Butanone                         |
| GC/MS             | TO-14A/TO-15 | 2-Chlorotoluene                    |
| GC/MS             | TO-14A/TO-15 | 2-Hexanone                         |
| GC/MS             | TO-14A/TO-15 | 2,2-Dichloropropane                |
| GC/MS             | TO-14A/TO-15 | 2,2,4-Trimethylpentane             |
| GC/MS             | TO-14A/TO-15 | 4-Chlorotoluene                    |
| GC/MS             | TO-14A/TO-15 | 4-Ethyl Toluene                    |
| GC/MS             | TO-14A/TO-15 | 4-Methyl-2-Pentanone               |
| GC/MS             | TO-14A/TO-15 | Acetaldehyde                       |
| GC/MS             | TO-14A/TO-15 | Acetone                            |
| GC/MS             | TO-14A/TO-15 | Acrolein                           |
| GC/MS             | TO-14A/TO-15 | Acrylonitrile                      |
| GC/MS             | TO-14A/TO-15 | Allyl Chloride                     |
| GC/MS             | TO-14A/TO-15 | Benzene                            |
| GC/MS             | TO-14A/TO-15 | Benzyl Chloride                    |
| GC/MS             | TO-14A/TO-15 | Bromobenzene                       |
| GC/MS             | TO-14A/TO-15 | Bromodichloromethane               |
| GC/MS             | TO-14A/TO-15 | Bromoform                          |
| GC/MS             | TO-14A/TO-15 | Bromomethane                       |
| GC/MS             | TO-14A/TO-15 | c-1,2-Dichloroethene               |
| GC/MS             | TO-14A/TO-15 | c-1,3-Dichloropropene              |
| GC/MS             | TO-14A/TO-15 | Carbon Disulfide                   |
| GC/MS             | TO-14A/TO-15 | Carbon Tetrachloride               |
| GC/MS             | TO-14A/TO-15 | Chlorobenzene                      |
| GC/MS             | TO-14A/TO-15 | Chloroethane                       |
| GC/MS             | TO-14A/TO-15 | Chloroform                         |
| GC/MS             | TO-14A/TO-15 | Chloromethane                      |
| GC/MS             | TO-14A/TO-15 | Cyclohexane                        |
| GC/MS             | TO-14A/TO-15 | Cyclohexanone                      |
| GC/MS             | TO-14A/TO-15 | Dibromochloromethane               |
| GC/MS             | TO-14A/TO-15 | Dibromomethane                     |
| GC/MS             | TO-14A/TO-15 | Dichlorodifluoromethane (Freon-12) |
| GC/MS             | TO-14A/TO-15 | Ethanol                            |
| GC/MS             | TO-14A/TO-15 | Ethylbenzene                       |



.

### Certificate # ADE-1461

| Technology | Method           | Analyte                                           |
|------------|------------------|---------------------------------------------------|
| GC/MS      | TO-14A/TO-15     | Heptane                                           |
| GC/MS      | TO-14A/TO-15     | Hexachlorobutadiene                               |
| GC/MS      | TO-14A/TO-15     | Isopropanol                                       |
| GC/MS      | TO-14A/TO-15     | Isopropyl benzene                                 |
| GC/MS      | TO-14A/TO-15     | Isopropyl ether (DIPE)                            |
| GC/MS      | TO-14A/TO-15     | Methylene Chloride                                |
| GC/MS      | TO-14A/TO-15     | n-Butylbenzene                                    |
| GC/MS      | TO-14A/TO-15     | n-Hexane                                          |
| GC/MS      | TO-14A/TO-15     | n-Propyl Benzene                                  |
| GC/MS      | TO-14A/TO-15     | Naphthalene                                       |
| GC/MS      | TO-14A/TO-15     | o-Xylene                                          |
| GC/MS      | TO-14A/TO-15     | Ethyl Acetate                                     |
| GC/MS      | TO-14A/TO-15     | p-Isopropyltoluene                                |
| GC/MS      | TO-14A/TO-15     | p,&m-Xylene                                       |
| GC/MS      | TO-14A/TO-15     | Propene                                           |
| GC/MS      | TO-14A/TO-15     | sec-Butylbenzene                                  |
| GC/MS      | TO-14A/TO-15     | Styrene                                           |
| GC/MS      | TO-14A/TO-15     | t-1,2-Dichloroethene                              |
| GC/MS      | TO-14A/TO-15     | t-1,3-Dichloropropene                             |
| GC/MS      | TO-14A/TO-15     | t-Amyl Methyl Ether (TAME)                        |
| GC/MS      | TO-14A/TO-15     | t-Butanol (TBA)                                   |
| GC/MS      | TO-14A/TO-15     | t-Butyl Ethyl Ether (ETBE)                        |
| GC/MS      | TO-14A/TO-15     | t-Butyl Methyl Ether (MTBE)                       |
| GC/MS      | TO-14A/TO-15     | tert-Butylbenzene                                 |
| GC/MS      | TO-14A/TO-15     | Tetrachloroethene                                 |
| GC/MS      | TO-14A/TO-15     | Tetrahydrofuran                                   |
| GC/MS      | TO-14A/TO-15     | Toluene                                           |
| GC/MS      | TO-14A/TO-15     | Trichloroethene                                   |
| GC/MS      | TO-14A/TO-15     | Trichlorofluoromethane                            |
| GC/MS      | TO-14A/TO-15     | Vinyl Acetate                                     |
| GC/MS      | TO-14A/TO-15     | Vinyl Bromide                                     |
| GC/MS      | TO-14A/TO-15     | Vinyl Chloride                                    |
| GC/MS      | TO-14A/TO-15 SIM | 1,1-Dichloroethane                                |
| GC/MS      | TO-14A/TO-15 SIM | 1,1-Dichloroethene                                |
| GC/MS      | TO-14A/TO-15 SIM | 1,1,1-Trichloroethane                             |
| GC/MS      | TO-14A/TO-15 SIM | 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) |
| GC/MS      | TO-14A/TO-15 SIM | 1,1,2-Trichloroethane                             |
| GC/MS      | TO-14A/TO-15 SIM | 1,1,2,2-Tetrachloroethane                         |
| GC/MS      | TO-14A/TO-15 SIM | 1,2-Dibromoethane                                 |



### Certificate # ADE-1461

| Air and Emissions |                  |                                    |  |
|-------------------|------------------|------------------------------------|--|
| Technology        | Method           | Analyte                            |  |
| GC/MS             | TO-14A/TO-15 SIM | 1,2-Dichlorobenzene                |  |
| GC/MS             | TO-14A/TO-15 SIM | 1,2-Dichloroethane                 |  |
| GC/MS             | TO-14A/TO-15 SIM | 1,2-Dichloropropane                |  |
| GC/MS             | TO-14A/TO-15 SIM | 1,2,4-Trichlorobenzene             |  |
| GC/MS             | TO-14A/TO-15 SIM | 1,3-Dichlorobenzene                |  |
| GC/MS             | TO-14A/TO-15 SIM | 1,4-Dichlorobenzene                |  |
| GC/MS             | TO-14A/TO-15 SIM | Benzene                            |  |
| GC/MS             | TO-14A/TO-15 SIM | Benzyl Chloride                    |  |
| GC/MS             | TO-14A/TO-15 SIM | Bromodichloromethane               |  |
| GC/MS             | TO-14A/TO-15 SIM | Bromomethane                       |  |
| GC/MS             | TO-14A/TO-15 SIM | c-1,2-Dichloroethene               |  |
| GC/MS             | TO-14A/TO-15 SIM | Carbon Tetrachloride               |  |
| GC/MS             | TO-14A/TO-15 SIM | Chlorobenzene                      |  |
| GC/MS             | TO-14A/TO-15 SIM | Chloroethane                       |  |
| GC/MS             | TO-14A/TO-15 SIM | Chloroform                         |  |
| GC/MS             | TO-14A/TO-15 SIM | Chloromethane                      |  |
| GC/MS             | TO-14A/TO-15 SIM | Dichlorodifluoromethane (Freon-12) |  |
| GC/MS             | TO-14A/TO-15 SIM | Ethylbenzene                       |  |
| GC/MS             | TO-14A/TO-15 SIM | Methylene Chloride                 |  |
| GC/MS             | TO-14A/TO-15 SIM | n-Hexane                           |  |
| GC/MS             | TO-14A/TO-15 SIM | o-Xylene                           |  |
| GC/MS             | TO-14A/TO-15 SIM | p,&m-Xylene                        |  |
| GC/MS             | TO-14A/TO-15 SIM | Styrene                            |  |
| GC/MS             | TO-14A/TO-15 SIM | t-1,2-Dichloroethene               |  |
| GC/MS             | TO-14A/TO-15 SIM | t-1,3-Dichloropropene              |  |
| GC/MS             | TO-14A/TO-15 SIM | t-Butyl Methyl Ether (MTBE)        |  |
| GC/MS             | TO-14A/TO-15 SIM | Tetrachloroethene                  |  |
| GC/MS             | TO-14A/TO-15 SIM | Toluene                            |  |
| GC/MS             | TO-14A/TO-15 SIM | Trichloroethene                    |  |
| GC/MS             | TO-14A/TO-15 SIM | Trichlorofluoromethane             |  |
| GC/MS             | TO-14A/TO-15 SIM | Vinyl Chloride                     |  |
| GC/FID/PID        | TO-3             | Benzene                            |  |
| GC/FID/PID        | TO-3             | Ethylbenzene                       |  |
| GC/FID/PID        | TO-3             | Gasoline                           |  |
| GC/FID/PID        | TO-3             | o-Xylene                           |  |
| GC/FID/PID        | TO-3             | p,&m-Xylene                        |  |
| GC/FID/PID        | TO-3             | t-Butyl Methyl Ether (MTBE)        |  |
| GC/FID/PID        | TO-3             | Toluene                            |  |
| GC/FID/TCD        | ASTM 1946        | Carbon Dioxide                     |  |



### Certificate # ADE-1461

| Air and Emissions |           |                 |
|-------------------|-----------|-----------------|
| Technology        | Method    | Analyte         |
| GC/FID/TCD        | ASTM 1946 | Carbon Monoxide |
| GC/FID/TCD        | ASTM 1946 | Helium          |
| GC/FID/TCD        | ASTM 1946 | Hydrogen        |
| GC/FID/TCD        | ASTM 1946 | Methane         |
| GC/FID/TCD        | ASTM 1946 | Nitrogen        |
| GC/FID/TCD        | ASTM 1946 | Oxygen          |

Notes:

1) This laboratory offers commercial testing service.

1 Approved by: \_

R. Douglas Leonard Chief Technical Officer Date: August 19, 2016

Re-issued: 08/19/16

BOARD OF PUBLIC WORKS MEMBERS

> KEVIN JAMES PRESIDENT

MONICA RODRIGUEZ VICE PRESIDENT

HEATHER MARIE REPENNING PRESIDENT PRO TEMPORE

> MICHAEL R. DAVIS COMMISSIONER

JOEL F. JACINTO COMMISSIONER

FERNANDO CAMPOS EXECUTIVE OFFICER

June 10, 2016

Val Mallari Air Technology Laboratories, Inc. 18501 Gale Ave. #130 City of Industry, CA 91748 CITY OF LOS ANGELES



ERIC GARCETTI

MAYOR

JOHN L. REAMER, JR. Inspector of Public Works and Director BUREAU OF CONTRACT ADMINISTRATION 1149 S. BROADWAY, SUITE 300 LOS ANGELES, CA 90015 (213) 847-1922

http://bca.lacity.org

SLB - 3613 Expiration Date: 06/10/2018 Phone: (626) 964-4032

### SMALL, LOCAL BUSINESS (SLB) CERTIFICATION APPROVAL

Dear Mr. Mallari:

Pursuant to the provisions of the City of Los Angeles Administrative Code Article 4 of Chapter 1 of Division 10 and the policy of the City of Los Angeles Bureau of Contract Administration, Office of Contract Compliance (OCC), we are pleased to inform you that your firm has been certified as a **SLB** and has been placed in the City of Los Angeles Small, Local Business directory as a firm specializing in **Air Testing Laboratory - Analysis of Air or Soil Vapor Samples for Volatile Constituents; Sampling Equipment and Accessories.** 

This certification is valid for two years from the date of this letter. If after two years you wish to be recertified by the City of Los Angeles and have not received recertification documents, please contact this office. If the company's principal office has moved outside the County of Los Angeles, and/or its annual gross receipts including affiliates (if any), exceed \$3 million, you are required to notify this office of the move, and/or change in annual receipts in writing. Please include your file number on each page of correspondence relating to this matter.

The City reserves the right to withdraw this certification at any time if it is determined certification was knowingly obtained by false, misleading or incorrect information. The City also reserves the right to request additional information and/or conduct on-site visits at any time during the certification period to verify any documentation submitted with your application. By accepting certification, the firm of **Air Technology Laboratories, Inc.** hereby consents to the examination of its books, records and documents by the City.

For information on City of Los Angeles contracting opportunities, please register at www.LABAVN.org.

Should you have any questions, please contact me at (213) 847-2641 or e-mail at claire.berriman@lacity.org.

Sincerely,

Claire Berriman, Certification Supervisor Office of Contract Compliance Bureau of Contract Administration